They found the switch that makes the body attack cancer-Click HereThis common liver supplement could boost cancer treatment success-Click HereThis European treatment for joint pain just passed a major scientific test-Click HereTiny brain nanotubes found by Johns Hopkins may spread Alzheimer’s-Click HereExercise might be the key to a younger, sharper immune system-Click HereScientists grow mini human livers that predict toxic drug reactions-Click HereThis new blood test can catch cancer 10 years early-Click HereYour brain’s power supply may hold the key to mental illness-Click HereNew research reveals how ADHD sparks extraordinary creativity-Click HereThis experimental “super vaccine” stopped cancer cold in the lab-Click HereSports concussions increase injury risk-Click HereUncovering a cellular process that leads to inflammation-Click HereNew study links contraceptive pills and depression-Click HereA short snout predisposes dogs to sleep apnea-Click HereBuilding a new vaccine arsenal to eradicate polio-Click HereThe Viking disease can be due to gene variants inherited from Neanderthals-Click HereQatar Omicron-wave study shows slow decline of natural immunity, rapid decline of vaccine immunity-Click HereMore than a quarter of people with asthma still over-using rescue inhalers, putting them at increased risk of severe attacks-Click hereProgress on early detection of Alzheimer’s disease-Click HereDried samples of saliva and fingertip blood are useful in monitoring responses to coronavirus vaccines-Click HereDietary fiber in the gut may help with skin allergies-Click HereResearchers discover mechanism linking mutations in the ‘dark matter’ of the genome to cancer-Click HereDespite dire warnings, monarch butterfly numbers are solid-Click HereImmunotherapy may get a boost-Click HereArtificial intelligence reveals a never-before described 3D structure in rotavirus spike protein-Click HereRecurring brain tumors shaped by genetic evolution and microenvironment-Click HereCompound shows promise for minimizing erratic movements in Parkinson’s patients-Click HereConsuming fruit and vegetables and exercising can make you happier-Click HereCOVID-19 slows birth rate in US, Europe-Click HereLink between ADHD and dementia across generations-Click HerePreventing the long-term effects of traumatic brain injury-Click HereStudy details robust T-cell response to mRNA COVID-19 vaccines — a more durable source of protection-Click HereArtificial color-changing material that mimics chameleon skin can detect seafood freshness-Click HereNeural implant monitors multiple brain areas at once, provides new neuroscience insights-Click HereB cell activating factor possible key to hemophilia immune tolerance-Click HereMasks not enough to stop COVID-19’s spread without distancing, study finds-Click HereAI can detect COVID-19 in the lungs like a virtual physician, new study shows-Click HerePhase 1 human trials suggest breast cancer drug is safe, effective-Click HereRe-engineered enzyme could help reverse damage from spinal cord injury and stroke-Click HereWeight between young adulthood and midlife linked to early mortality-Click HereIncreased fertility for women with Neanderthal gene, study suggests-Click HereCoronavirus testing kits to be developed using RNA imaging technology-Click HereFacial expressions don’t tell the whole story of emotion-Click HereAcid reflux drug is a surprising candidate to curb preterm birth-Click HereTreating Gulf War Illness With FDA-Approved Antiviral Drugs-Click HereHeart patch could limit muscle damage in heart attack aftermath-Click HereA nap a day keeps high blood pressure at bay-Click HereIn small groups, people follow high-performing leaders-Click HereTick tock: Commitment readiness predicts relationship success-Click HereA comprehensive ‘parts list’ of the brain built from its components, the cells-Click HereResearchers confine mature cells to turn them into stem cells-Click HereNew tissue-imaging technology could enable real-time diagnostics, map cancer progression-Click HereEverything big data claims to know about you could be wrong-Click HerePsychedelic drugs promote neural plasticity in rats and flies-Click HereEducation linked to higher risk of short-sightedness-Click HereNew 3D printer can create complex biological tissues-Click HereThe creative brain is wired differently-Click HereWomen survive crises better than men-Click HerePrecise DNA editing made easy: New enzyme to rewrite the genome-Click HereFirst Time-Lapse Footage of Cell Activity During Limb RegenerationStudy Suggests Approach to Waking Patients After Surgery

Patient #1: A New Battle Against Cystinosis

0

SAN DIEGO, Calif. (Ivanhoe Newswire)— It’s a disease that slowly and aggressively attacks your organs, tissues, muscles, bones, eyes, even your brain. Cystinosis is a genetic disorder with no cure. Currently the only option for treatment is an army of pills to slow it down— missing even one dose can be devastating. One young man is the first to try a new treatment that may save thousands of lives.

Most people don’t know the pain behind twenty-one-year old Jordan Janz smile. He’s living with cystinosis— a rare, unrelenting disorder.

“I was diagnosed at eight months old and basically have been living with it my whole life,” Janz shared.

In Jordan, cystine, an amino acid, gets trapped in his cells. When cystine levels rise, crystals build up all over the body leaving a trail of damage— even causing him to vomit up to 13 times a day.

“It’s not how strong you are physically; I think it’s how strong you are mentally when you come into this,” Janz admitted.

Traditional cystinosis treatments aim to slow the buildup of cystine inside cells. In order to do that Jordan takes 56 pills each day, but now he hopes to change that. Jordan is the first patient to test a unique gene therapy.

UC San Diego professor Stephanie Cherqui took stem cells from Jordan’s bone marrow, re-engineered the cells, introduced genes that will produce cystinosin … then reinfused Jordan with his own cystinosin-producing cells.

(Read Full Interview)

“So, then these cells become a source of healthy stem cells for the rest of the life of the patient,” explained Stephanie Cherqui, PhD of the department of pediatrics at the University of California San Diego.

Jordan had to take chemo twice a day, but he hasn’t let that scare him away.

“I’m doing this obviously for other cystinosis families, right? Somebody has to do it,” Janz shared.

Hoping that many others after him will now get the chance at a better, longer life.

Professor Cherqui’s trial is ongoing and has recently admitted a second patient. For those born with cystinosis who make it into adulthood, the average lifespan is around 28 years old. Now, with Cherqui’s new genetically modified stem cells Janz is making a good recovery. Though it is still too soon to tell, hopefully it will be able to help even more patients in the future.

Contributors to this news report include: Cyndy McGrath, Executive Producer; Marsha Lewis, Field Producer; Sabrina Broadbent, Field Producer; Roque Correa, Editor.

To receive a free weekly e-mail on Medical Breakthroughs from Ivanhoe, sign up at: http://www.ivanhoe.com/ftk

MEDICAL BREAKTHROUGHS

RESEARCH SUMMARY

 

TOPIC:        PATIENT #1: A NEW BATTLE AGAINST CYSTINOSIS

REPORT:    MB #4770

BACKGROUND: Cystinosis is a rare genetic disease caused by a buildup of cystine in the body. This buildup causes crystals to form and harm the body. It affects about 500 to 600 children and adults in the United States. Cystinosis is a genetic disorder, which means a person is born with it. It occurs when both parents pass down a specific gene that doesn’t work right. In people with cystinosis an amino acid called cystine gets trapped inside the cells, builds up, and forms crystals. People with cystinosis cannot feel the rise in cystine levels. But over time, the buildup of crystals causes damage to every cell and organ in the body. Signs of damage usually start in the kidneys and eyes. Damage cannot be undone but it can be slowed down. Keeping cystine levels low is the main way to slow this damage. There are three types of cystinosis. Nephropathic Cystinosis or Classic Infantile Cystinosis is the most common form of the disease and is also the most serious. About 95% of people with cystinosis have this type. Symptoms usually appear early in the first year of life, and it’s a lifelong disease. Intermediate cystinosis or juvenile cystinosis is a less serious form of the disease and may not be diagnosed until a person is a teenager. Ocular cystinosis or nonnephropathic cystinosis is the least serious form of the disease and only affects the eyes.

(Source: https://www.cystinosisunited.com/what-is-cystinosis)

DIAGNOSING: A diagnosis of cystinosis is based upon characteristic symptoms, a detailed patient history, a thorough clinical evaluation and a variety of specialized tests. A diagnosis of cystinosis can be confirmed by measuring cystine levels in certain white blood cells. Urinary examination may reveal excess loss of nutrients including minerals, electrolytes, amino acids, carnitine and water, which is indicative of renal Fanconi syndrome. A physician may use a special microscope called a slit lamp to view the eyes through high magnification, which can reveal cystine crystals in the cornea. A diagnosis of cystinosis can be confirmed by molecular genetic testing, which can identify the characteristic CTNS gene mutation that causes the disorder. Prenatal diagnosis is also available for families with a known risk for having a baby with cystinosis. Cystine levels can be measured in cells obtained from the amniotic fluid that surrounds the developing fetus. A test known as chorionic villus sampling can also be used to obtain a prenatal diagnosis of cystinosis. Chorionic villi are thin, hair-like structures found on the placenta. These cells can be examined to detect elevated levels of cystine. There are three treatment options. One is cystine depleting therapy. Cysteamine is a cystine-depleting agent that can greatly lower cystine levels within cells. Therapy with cysteamine slows the development and progression of kidney damage and enhances growth in children. There is also symptomatic therapy which is when Renal Fanconi Syndrome is treated with a high intake of fluids and electrolytes to prevent excessive reduction of body water (dehydration). Finally, there is renal transplantation. Individuals with infantile and intermediate cystinosis eventually develop end stage renal disease (ESRD), requiring a kidney transplant.

(Source: https://rarediseases.org/rare-diseases/cystinosis/)

 NEW TECHNOLOGY: In October 2019, Dr. Stephanie Cherqui, Associate Professor of Pediatrics and her team at University of California – San Diego School of Medicine, developed a clinical trial gene therapy approach to treat cystinosis. It involves genetically modifying the patients own stem cells. Doctors obtain hematopoietic stem cells from the patient’s bone marrow. The scientist then re-engineer the stem cells in a lab using gene therapy techniques to introduce a normal version of the cystinosin gene. Then they reinfuse the patient with their new cystinosin-producing cells. Like a bone marrow transplant the patient is both the donor and the recipient. The gene-modified stem cells embed themselves into the bone marrow, where they divide and differentiate to all types of blood cells. Those cells are then circulated throughout the body and embed in tissues and organs, where they produce the normal cystinosin protein. Then, the cystinosin protein will be transferred to the surrounding diseased cells. At that point, the patient’s cells should be able to transport cystine for disposal—potentially alleviating the symptoms.

(Source: https://ucsdnews.ucsd.edu/feature/a-tornado-at-the-front-door-a-tsunami-at-the-back-door)

FOR MORE INFORMATION ON THIS REPORT, PLEASE CONTACT:

HEATHER BUSCHMAN

ASSISTANT DIRECTOR, COMMUNICATIONS AND MEDIA RELATIONS

UC SAN DIEGO HEALTH

HBUSCHMAN@HEALTH.UCSD.EDU

 

If this story or any other Ivanhoe story has impacted your life or prompted you or someone you know to seek or change treatments, please let us know by contacting Marjorie Bekaert Thomas at mthomas@ivanhoe.com

Doctor Q and A

Read the entire Doctor Q&A for Stephanie Cherqui, PhD, Assistant Professor in the Department of Pediatrics

Read the entire Q&A