Medical Breakthroughs Reported by Ivanhoe.com. Click here to go to the homepage.
Be the First to Know. Click here to subscribe FREE!
Search Reports: Use quotation marks around your multi-word search terms in the box below to perform search of Ivanhoe.com.
Advances in health and medicine.Use " marks around search terms
 
What's New
News Flash
Discussion
healthchannelnews
  Alternative Health
Arthritis
Asthma & Allergies
Autism
Breast Cancer
Cancer
Cardiovascular Health
Children's Health
Dental Health
Diabetes
Fertility & Pregnancy
Men's Health
Mental Health
Multiple Sclerosis
Neurological Disorders
Nutrition & Wellness
Orthopedics
Pet Health
Robotics
Seniors' Health
Sports Medicine
Vision
Women's Health
Advances in health and medicine.
Click here to sign up for Medical Alerts!
Click below to access other news from Ivanhoe Broadcast News.
  Click here to get Ivanhoe's Medical Headline RSS feed Click here to listen to Ivanhoe's Medical Podcasts
Useful Links
Play It Again, Please
E-Mail a Friend
Order Books Online
Inside Science
Smart Woman
Advances in health and medicine.
Smart Woman Home
Click here to read the story
Click here to read the story
Click here to read the story
Smart Woman Home
Advances in health and medicine.
Click below to learn about Ivanhoe.
  Awards
About Us
Contact Us
Employment
Feedback
Ivanhoe FAQ
Our TV Partners
Travel Calendar
Advances in health and medicine.
Ivanhoe celebrates 20 years of medical news reporting reaching nearly 80 million TV households each week. Click here to learn more...
Advances in health and medicine.
Marjorie Bekaert Thomas
Publisher/President
Advances in health and medicine.
Advertisement
General Health Channel
Reported November 20, 2012

New Cells For Regenerative Medicine

 

(Ivanhoe Newswire) – A research team at Georgetown Lombardi Comprehensive Cancer Center say the new and powerful cells they first created in the laboratory a year ago constitute a new stem-like state of adult epithelial cells. They say these cells have attributes that may make regenerative medicine truly possible.
 
The study reports that these new stem-like cells do not express the same genes as embryonic stem cells and induced pluripotent stem cells (iPSCs) do. That explains why they don't produce tumors when they grow in the laboratory, as the other stem cells do, and why they are stable, producing the kind of cells researchers want them to.
 
"These seem to be exactly the kind of cells that we need to make regenerative medicine a reality," the study's senior investigator, chairman of the department of pathology at Georgetown Lombardi, a part of Georgetown University Medical Center was quoted saying.
 
This study is a continuation of work that led to a breakthrough in December 2011 when Schlegel and his colleagues demonstrated that he and his team had designed a laboratory technique that keep both normal as well as cancer cells alive indefinitely, which previously had not been possible.
 
They had discovered that adding two different substances to these cells (a Rho kinase inhibitor and fibroblast feeder cells) pushes them to morph into stem-like cells that stay alive indefinitely. When the two substances are withdrawn from the cells, they revert back to the type of cell that they once were. They dubbed these cells conditionally reprogrammed cells (CRCs).
 
The advance was seen as an exciting demonstration of personalized cancer medicine. In fact, a case study authored by Schlegel and his team in September demonstrated how CRCs derived from normal and tumor cells of a 24-year-old man with a rare type of lung tumor allowed physicians to identify an effective cancer therapy. These cells were used to screen potential treatments and in this way, the scientists were able to see which therapies were active against the tumor cells and less harmful to the normal cells.
 
"Our first clinical application utilizing this technique represents a powerful example of individualized medicine," Schlegel was quoted saying in September. But he cautioned, "It will take an army of researchers and solid science to figure out if this technique will be the advance we need to usher in a new era of personalized medicine."
 
This study was designed to see how the CRCs compared to known properties of embryonic stem cells and iPSCs, which are adult cells that have been manipulated by addition of genes to make them capable of differentiating (morphing into new adult cell types). Both embryonic stem cells and iPSCs have been investigated for use in regenerative medicine, but each can form tumors when injected into mice and "it is difficult to control what kind of cells these cells differentiate into," Schlegel says. "You may want them to be a lung cell, but they could form a skin cell instead."
 
In contrast, cells derived from the lung will develop stem-like properties when the conditions are added, allowing expansion of the lung cell population. However, when the conditions are withdrawn, they will revert to differentiated lung cells, he says. Schlegel added that they do this rapidly — within three days of adding the inhibitor and feeder cells, they efficiently generated large numbers of stem-like cells. It is also completely reversible: when the conditions are taken away, the cells lose their stem-like properties and potentially can be safely implanted into tissue.
 
The researchers compared gene expression between the three cell types and found that while some of the same genes are expressed in all the cells, CRCs don't over express the same critical genes that embryonic stem cells and iPSCs do. "Because they don't express those genes, they don't form tumors and they are lineage committed, unlike the other cells," Schlegel says. "That shows us that CRCs are a different kind of stem-like cell."
 
As part of the study, the research team showed that when cervical cells are conditioned and placed on a three-dimensional platform, they start to form cells that "look like the cervix," Schlegel says. The same is true from cells in the trachea — on a 3-D platform, they begin to look like a trachea, he says.
 
If and when use of CRCs are perfected for the clinic — and that will take considerable work, Schlegel says — they potential could be used in a wide variety of novel ways.
 
"Perhaps they could be used more broadly for chemo-sensitivity, as we demonstrated in the NEJM study, for regenerative medicine to replace organ tissue that is damaged, for diabetes — we could remove remaining islet ells in the pancreas, expand them, and implant them back into the pancreas —and to treat the many storage diseases caused by lack of liver enzymes. In those cases, we can take liver cells out, expand them and insert normal genes in them, and put them back in patients," Schlegel added.
 
"The potential of these cells are vast, and exciting research to help define their ability is ongoing," he concluded.
 
Source: Proceedings of the National Academy of Sciences (PNAS), November 2012
 

 

Related Articles in Latest Medical News:

[ Back to General Health Channel Home ]

MEDICAL ALERT!
Stay up to date on General Health. We can notify you every time there is a medical breakthrough. Click here to sign up.
EDITOR'S CHOICE
Your Baby DVD
What Every Pregnant Woman Should Know

Happier Woman DVD
25 ways to reduce stress

Forever Young DVD
25 ways to lose 10 years

Feel Good Again DVD
25 ways to STOP THE PAIN

If a treatment you read about here helps you, let us know...Click here!!
Advertisement

Follow Us On:

Click here to go to Ivanhoe's Twitter page Click here to go to Ivanhoe's Facebook page Click here to go to Ivanhoe's YouTube page

Scale
Do you know if you are height-weight proportional?

Find out your Body Mass Index (BMI).

Click Here

How safe are your dietary supplements?

Click here to find out with the FDA's list of supplements and drug interactions.

Home | What's New | News Flash | Search/Latest Medical News | E-Mail Medical Alerts!
Ivanhoe FAQ | Privacy Policy | Our TV Partners | Awards | Useful Links | Play It Again, Please
RSS Feeds | Advertising/Sponsorships | Content Syndication | Reprints

Advances in health and medicine.
webdoctor@ivanhoe.com
Copyright © 2014 Ivanhoe Broadcast News, Inc.
2745 West Fairbanks Avenue
Winter Park, Florida 32789
(407) 740-0789

P.O. Box 865
Orlando, Florida 32802

Premium Content in Latest Medical News Denotes Premium Content in Latest Medical News