Medical Breakthroughs Reported by Ivanhoe.com. Click here to go to the homepage.
Be the First to Know. Click here to subscribe FREE!
Search Reports: Use quotation marks around your multi-word search terms in the box below to perform search of Ivanhoe.com.
Advances in health and medicine.Use " marks around search terms
 
What's New
News Flash
Discussion
healthchannelnews
  Alternative Health
Arthritis
Asthma & Allergies
Autism
Breast Cancer
Cancer
Cardiovascular Health
Children's Health
Dental Health
Diabetes
Fertility & Pregnancy
Men's Health
Mental Health
Multiple Sclerosis
Neurological Disorders
Nutrition & Wellness
Orthopedics
Pet Health
Robotics
Seniors' Health
Sports Medicine
Vision
Women's Health
Advances in health and medicine.
Click here to sign up for Medical Alerts!
Click below to access other news from Ivanhoe Broadcast News.
  Click here to get Ivanhoe's Medical Headline RSS feed Click here to listen to Ivanhoe's Medical Podcasts
Useful Links
Play It Again, Please
E-Mail a Friend
Order Books Online
Inside Science
Smart Woman
Advances in health and medicine.
Smart Woman Home
Click here to read the story
Click here to read the story
Click here to read the story
Smart Woman Home
Advances in health and medicine.
Click below to learn about Ivanhoe.
  Awards
About Us
Contact Us
Employment
Feedback
Ivanhoe FAQ
Our TV Partners
Travel Calendar
Advances in health and medicine.
Ivanhoe celebrates 20 years of medical news reporting reaching nearly 80 million TV households each week. Click here to learn more...
Advances in health and medicine.
Marjorie Bekaert Thomas
Publisher/President
Advances in health and medicine.
Advertisement
Mental Health Channel
Reported May 27, 2011

Autism May Change Structures in the Brain

(Ivanhoe Newswire) -- For decades, autism researchers have faced a baffling riddle: how to unravel a disorder that leaves no known physical trace as it develops in the brain.
Now a UCLA study is the first to reveal how the disorder makes its mark at the molecular level, resulting in an autistic brain that differs dramatically in structure from a healthy one. The discovery also identifies a new line of attack for researchers, who currently face a vast array of potential fronts for tackling the neurological disease and identifying its diverse causes.

"If you randomly pick 20 people with autism, the cause of each person's disease will be unique," principal investigator Dr. Daniel Geschwind, the Gordon and Virginia MacDonald Distinguished Chair in Human Genetics and a professor of neurology and psychiatry at the David Geffen School of Medicine at UCLA, was quoted as saying. "Yet when we examined how genes and proteins interact in autistic people's brains, we saw well-defined shared patterns. This common thread could hold the key to pinpointing the disorder's origins."

The researchers compared brain tissue samples obtained after death from 19 autism patients and 17 healthy volunteers. After profiling three brain areas previously linked to autism, the group zeroed in on the cerebral cortex, the most evolved part of the human brain.
The researchers focused on gene expression — how a gene's DNA sequence is copied into RNA, which directs the synthesis of cellular molecules called proteins. Each protein is assigned a specific task by the gene to perform in the cell.

"We were surprised to see similar gene expression patterns in most of the autistic brains we studied," first author Irina Voineagu, a UCLA postdoctoral fellow in neurology, was quoted as saying. "From a molecular perspective, half of these brains shared a common genetic signature. Given autism's numerous causes, this was an unexpected and exciting finding."
Scientists then compared the frontal and temporal lobes in the healthy brains, they saw that more than 500 genes were expressed at different levels in the two regions. In the autistic brains, these differences were virtually non-existent.

"In a healthy brain, hundreds of genes behave differently from region to region, and the frontal and temporal lobes are easy to tell apart," Geschwind said. "We didn't see this in the autistic brain. Instead, the frontal lobe closely resembles the temporal lobe. Most of the features that normally distinguish the two regions had disappeared."

"Several of the genes that cropped up in these shared patterns were previously linked to autism," said Geschwind. "By demonstrating that this pathology is passed from the genes to the RNA to the cellular proteins, we provide evidence that the common molecular changes in neuron function and communication are a cause, not an effect, of the disease."
The next step will be for the research team to expand its search for the genetic and related causes of autism to other regions of the brain.

To Receive Med Alerts all year click here


SOURCE: Nature, May  2011

More Information

Related Articles in Latest Medical News:

[ Back to Mental Health Channel Home ]

MEDICAL ALERT!
Stay up to date on Mental Health. We can notify you every time there is a medical breakthrough. Click here to sign up.
EDITOR'S CHOICE
Advertisement

Follow Us On:

Click here to go to Ivanhoe's Twitter page Click here to go to Ivanhoe's Facebook page Click here to go to Ivanhoe's YouTube page

Are you under a lot of pressure?

Certain aspects of our habits, our lifestyles, and our environments can make each of us more or less vulnerable to the negative effects of stress. How vulnerable are YOU to stress?

Click here to rate your vulnerability to stress.

Home | What's New | News Flash | Search/Latest Medical News | E-Mail Medical Alerts!
Ivanhoe FAQ | Privacy Policy | Our TV Partners | Awards | Useful Links | Play It Again, Please
RSS Feeds | Advertising/Sponsorships | Content Syndication | Reprints

Advances in health and medicine.
webdoctor@ivanhoe.com
Copyright © 2014 Ivanhoe Broadcast News, Inc.
2745 West Fairbanks Avenue
Winter Park, Florida 32789
(407) 740-0789

P.O. Box 865
Orlando, Florida 32802

Premium Content in Latest Medical News Denotes Premium Content in Latest Medical News